
A Mobility Framework for OMNeT++
User Manual

Version 1.0a4

Marc Löbbers
Daniel Willkomm

loebbers|willkomm@tkn.tu-berlin.de

January 12, 2007

WARNING: This is the manual of the OLD Mobility Framework,
version 1. There are serveral parts wich are not up tp date and have
changed in version 2. However, it might still be helpfull to under-
stand the general concepts of the Mobility Framework.

1

CONTENTS CONTENTS

Contents
1 Introduction 3

1.1 What is the Mobility Framework for? 3
1.2 History . 3
1.3 Authors . 4

2 Overview 4
2.1 Concept . 4
2.2 Using the Mobility Framework 5
2.3 Directory structure . 7

3 Getting the Mobility Framework started 8
3.1 Installation . 8
3.2 Creating an own network . 8
3.3 Creating a new module . 9

4 Building Own Simulations 10
4.1 The Basic Module concept . 10
4.2 The Message Concept . 13
4.3 The Nic Concept . 16

4.3.1 snrEval . 17

5 Physical Layer Modules 17
5.1 SnrEval . 18
5.2 Decider . 19
5.3 P2PPhyLayer . 19

6 Using the Blackboard 19
6.1 Methods for the subscriber . 20
6.2 Getting informed . 21
6.3 Methods for the publisher . 22

7 Mobility Modules 24
7.1 The Mobility Architecture . 24
7.2 ChannelControl . 25
7.3 Implementing Mobility Models 26

2

1 INTRODUCTION

1 Introduction

1.1 What is the Mobility Framework for?
This framework is intended to support wireless and mobile simulations within
OMNeT++. The core framework implements the support for node mobility, dy-
namic connection management and a wireless channel model. Additionally the
core framework provides basic modules that can be derived in order to implement
own modules. With this concept a programmer can easily develop own protocol
implementations for the Mobility Framework (MF) without having to deal with
the necessary interface and interoperability stuff.
The framework can be used for simulating:

• fixed wireless networks

• mobile wireless networks

• distributed (ad-hoc) and centralized networks

• sensor networks

• multichannel wireless networks

• many other simulations that need mobility support and / or a wireless inter-
face

We are currently developing a library of standard protocols for the MF (802.11,
AODV, . . .). Our goal is to have a rich library of such protocols to enable easy
plug-and-play simulations of various kinds of widely used protocols.

1.2 History
This mobility extension for OMNeT++ has been written by several people at the
Telecommunication Networks Group at the Technische Universitaet Berlin.

The first version (FraSiMO) was written within a student project in June 2001
by Heiko Scheunemann and Daniel M. Kirsch. However, none of their code sur-
vived the complete review by Steffen Sroka in 2002/2003, who rewrote the frame-
work for better integration with OMNeT++ and higher speed (FraSiMO II). He
had help from Christian Frank, who reviewed the mobility and position handling
and Witold Drytkiewicz who speeded up the connection handling of the Channel-
Control module.

The current version (mobility-fw) was started in October 2003 by Marc Loeb-
bers. He added the dynamic gate handling and started structuring and document-
ing the code. He had a lot of help from Daniel Willkomm. During this process the

3

1.3 Authors 2 OVERVIEW

ChannelControl and Blackboard were completely rewritten by Andreas Koepke.
The current version of the Blackboard is a result of an attempt to define com-
mon interfaces for the Mobility Framework and the IP-Suite and is maintained by
Andras Varga.

This first attempt of a manual was written by Marc Loebbers and Daniel
Willkomm. It is based on the paper ”A Mobility Framework for OMNeT++”
presented at the third International OMNeT++ Workshop at Budapest University
of Technology and Economics in January 2003.

1.3 Authors
The general idea and overall structure is mainly due to
Holger Karl (karl@tkn.tu-berlin.de).

FraSiMO:
Heiko Scheunemann TU Berlin
Daniel M. Kirsch TU Berlin

FraSiMO II:
Steffen Sroka TU Berlin
Christian Frank TU Berlin
Witold Drytkiewicz TU Berlin

Mobility Framework (mobility-fw):
Marc Loebbers TU Berlin (loebbers@tkn.tu-berlin.de)
Daniel Willkomm TU Berlin (willkomm@tkn.tu-berlin.de)
Andreas Koepke TU Berlin (koepke@tkn.tu-berlin.de)

2 Overview

2.1 Concept
The two core components of the Mobility Framework (MF) are an architecture for
mobility support and dynamic connection management and a model of a mobile
host in OMNeT++. Figure 1 shows a network setup with 10 nodes.

The ChannelControl module controls and maintains all potential connections
between the hosts. An OMNeT++ connection link in the MF does not automat-
ically indicate that the corresponding hosts are able to exchange data and com-
municate with each other. The ChannelControl module only connects all hosts
that possibly interfere with each other. A communication link is probably easi-

4

2.2 Using the Mobility Framework 2 OVERVIEW

est defined by its complement: All hosts that are not connected definitely do not
interfere with each other. Following this concept a host will receive every data
packet that its transceiver is potentially able to sense. The physical layer then
has to decide dependent on the received signal strength whether the data packet
will be processed or whether it will be treated as noise. For further details on the
connection management please refer to Section 7.2.

The internal structure of a mobile host is shown in Figure 2. Apart from the
standard ISO/OSI layers there is also a Mobility module and a module called
Blackboard. The Mobility module provides a geographical position of the host
and handles its movement. Section 7.1 contains a detailed description of the mo-
bility architecture. The Blackboard module is used for cross layer communication.
It provides information relevant to more than one layer like the actual energy sta-
tus of the host, the display appearance or the status of the radio. All other modules
implement the corresponding ISO/OSI layer functionality. Details on the imple-
mentation of these modules can be found in Section 4.

While the core MF does not provide any protocol implementations we also
plan to provide a library of standard modules for the lower layers of the ISO/OSI
protocol stack. Thus the MF will eventually enable simulation of various kinds of
wireless mobile networks “out of the box”.

2.2 Using the Mobility Framework
There are several ways to use the Mobility Framework. Which one is best suited
depends on the purpose you want to use the MF for. Once you successfully
compiled the MF you can just use the created library within your own simu-
lation or you should take a look at the example networks in the networks/
and core/basicNetworks directories if you want to create a new simulation
based on the Mobility Framework. Please note that you need to add the lib di-
rectory to your LD LIBRARY PATH or copy the library to a location where the
linker can find it in order to work with the MF.

We provide example networks for many different scenarios so it is very likely
that you will find a setup similar to your needs. The networks and the proto-
col implementations used are very well documented in the API documentation
(doc/api/index.html) so you should take a look there as well.

The template/ folder contains templates for the derivation or creation of
your own modules. You can copy the corresponding files you need, adapt them
to your needs and of course fill them with your code. Copy the Makefile.gen
file as well and change the MOBFW variable within Makefile.gen to point to
your mobility-fw folder and you can easily create a Makefile for your files
(just type opp makemake -f Makefile.gen).

Please note that the mobilityfw library does not contain any modules from the

5

2.3 Directory structure3 GETTING THE MOBILITY FRAMEWORK STARTED

development/ folder. Those implementations are to be considered experimen-
tal so we did not include them into the library. So if you want to enhance one of
the protocol implementations or use them as a base for you own implementation
you would have to copy the corresponding files as well. An alternative would be
to do your work within the development/ directory structure. You will have to
run make makefiles in the corresponding directories to “register” your newly
created classes with the Makefiles.

We explicitly encourage the use and improvement of those protocol implemen-
tations under development. The more feedback and bug-fixes we get the sooner
those protocols will reach a “stable” status and can be included into the library.
Additionally many of them already reached a decent state and only need some
more testing so please also report if you use those implementations and do not
experience problems. Please refer to the corresponding API documentation and
contact the individual authors for questions, feedback and bug reports.

2.3 Directory structure
Here is a list of all different directories including a brief description of the content
to help you find certain files.

3 Getting the Mobility Framework started
This section will explain the basic use of the MF. We assume that you are familiar
with programming in OMNeT++. If not you should read the OMNeT++ manual
(http://www.omnetpp.org/). After explaining how to install the MF we will give a
guideline how to create an own simulation network and how to derive your own
modules. For a description of the functionality of the different modules please
read Section 4 and the API documentation.

3.1 Installation
You need a running OMNeT++ version 3.0a8 or higher (recommended is 3.0a9 or
higher) to use the MF with all of its functionality. After downloading the most re-
cent version of the MF from the download area of http://mobility-fw.sourceforge.net
copy the file to the desired directory. cd to this directory and

• tar xzf mobility-fw-version.tgz

• Add your/path/to/mobility-fw-version/lib
to your LD LIBRARY PATH variable

6

3.1 Installation 3 GETTING THE MOBILITY FRAMEWORK STARTED

mobility-fw/ root directory
bitmaps/ icons for network graphics
core/ the core of the framework
basicMessages/ the basic message classes
basicModules/ all basic module classes
basicNetworks/ 2 basic sample networks
blackboard/ Blackboard stuff
channelcontrol/ ChannelControl modules
utils/ utilities

development/ experimental protocol implementations
applLayer/ application layer modules
messages/ all .msg files
mobility/ Mobility modules
netwLayer/ network layer modules
nic/ network interface modules
macLayer/ MAC layer modules
phyLayer/ physical layer modules
decider/ decider modules
snrEval/ snr evaluation modules

utils/ utilities
doc/ manual, API, neddoc...
include/ header and .ned includes
lib/ dir of the libmobilityfw.so
networks/ example networks
protocols/ tested protocol implementations
template/ templates to create own modules
testSuite/ regression test suite

7

3.2 Creating an own network3 GETTING THE MOBILITY FRAMEWORK STARTED

• cd mobility-fw-version/

• make install

• make

where version is the version number of the file you downloaded. You should
run the example simulations in the core/basicNetworks directory to see if
everything was built properly.

The file doc/hp/index.htmlwill link you to the documentation (API and
Neddoc reference and this manual) for the MF. You can also find links to coding
and documentation guidelines for your implementations on this page.

3.2 Creating an own network
To be able to easily create a new simulation network we provide template files.
They can be found in the template/ directory. Basically all you have to do is
to copy the desired template files into your network directory and adapt them. The
most important advises and rules are presented as comments in these files.

To create a new network you should create a new directory with the name of
yourNetwork. Copy the files YourNetwork.ned, YourHost.ned and Makefile.gen
(and YourNic.ned if needed) to the network directory. Give them names of your
choice and also adapt the module names inside these files correspondingly. If
you want to create own modules also copy the corresponding template files to the
yourNetwork directory, give them proper names and fill them with functionality
as described in Section 3.3.

You also have to set the MOBFW variable in the Makefile.gen to the path of your
mobility-fw directory so that the Makefile can find the MF library header and ned
files.

In the file YourHost.ned you have to declare what NIC and what modules you
want to use as protocol layers. If you want to create an own Nic Module you also
have to copy and modify the YourNic.ned file.

As soon as everything is ready you need to run make -f Makefile.gen
to create a Makefile and then run make. If you did not make any mistakes ;-) an
executable file yourNetwork is created. By running it the simulation is started.

3.3 Creating a new module
For every simple module three files have to be created, a .ned, a .h and a .cc file.
The best choice is to put all your own modules into the yourNetwork directory
(see Sec. 3.2). As an example we will assume to create a new MAC module from

8

4 BUILDING OWN SIMULATIONS

the YourMacLayer template in this section. However the procedure for all other
modules is more or less the same.

The template files already contain the main structure and only have to be mod-
ified and filled with functionality. The most important hints, rules, advises and
suggestions are given in the files as comments.

The YourMacLayer.ned file already contains the obligatory gates and the pa-
rameters needed by the BasicMacLayer module. Just add the additional parame-
ters you need for your module and change the name of the module to the desired
one. If you do not derive your module from a BasicMacLayer but an already exist-
ing protocol implementation (e.g. Mac802.11.ned) you have to add the additional
parameters needed by this module as well.

The YourMacLayer.h file already contains the class definition with the correct
derivation of the BasicMacLayer class and the Module Class Members() macro.
If you want to derive your module from an already existing protocol implemen-
tation you have to replace BasicMacLayer (e.g. with Mac802.11). The next thing
you should do is a “search and replace” of YourMacLayer with the desired name
for your module. Then this file simply has to be extended with all the extra func-
tions and variables you need. If you want to use the Blackboard you have to
uncomment the blackboard* functions (see Sec. 6).

The YourMacLayer.cc file contains the basic structure to fill the module with
functionality. The first thing you should do is a “search and replace” of YourMa-
cLayer with the class name you chose in the header file. The Define Module()
macro is also included. If you do not use your own .ned file you have to replace
this with the Define Module Like() macro.

The handleUpperMsg() and handleLowerMsg() functions contain the sendUp()
and sendDown() functions with example parameters in the obligatory structure. If
you want to use the Blackboard uncomment the blackboard* functions and fill
them with code. They already contain the structure they should have so please do
not change it (see Sec. 6).

4 Building Own Simulations
This section explains the basic concepts behind the Mobility Framework. The
class hierarchy is explained and all relevant functions of the Basic* modules are
introduced. For the detailed description of the functionality of the individual mod-
ules read Sections 5 - 7 and also refer to the Neddoc and API reference.

9

4.1 The Basic Module concept 4 BUILDING OWN SIMULATIONS

4.1 The Basic Module concept
All our Host submodule classes have a common base class BasicModule. The
BasicModule itself is derived from cSimpleModule (OMNeT++) and Blackboard-
Access which provides the functionality to subscribe for and publish information
on the Blackboard module. The usage of the Blackboard is explained in Section 6.

BasicModule The BasicModule uses the multi-stage initialization of OMNeT++
so all modules in the MF have to be implemented with two-stage initialization. In
case you use the Blackboard you have to do all your publish calls in stage 0 and
the subscribe calls have to be done in stage 1! This is to explicitly avoid that a
subscription to a parameter can happen before that parameter is published.

In the template files the initialize(int) functions already contain the call of
the initialize(int) function of the Basic Module this module is derived from. Do
not delete this line as the obligatory parameters of the Basic Modules have to be
initialized, too!

Additionally the BasicModule provides the logName() function, which returns
the ned module name and the OMNeT++ module index() of the Host module this
module belongs to. logName() is used in the debug macro for identification of the
host the debug output comes from. You can use the EV ¡¡“your debug output”
macro to print debug messages.

Address Concept We use the OMNeT++ module id()s for addressing in the MF.
The nic module id() is used as mac address and the netwLayer module id() as net-
work layer address. The netwLayer id() is also used as application layer address.
In order to obtain the address of the module we provide a myApplAddr(), myNet-
wAddr() and myMacAddr() function in the BasicApplLayer, BasicNetwLayer and
BasicMacLayer modules respectively.

The netw2mac() function of the ChannelControl module provides a simple
ARP like translation of network addresses to MAC addresses. However by re-
defining the getMacAddr() function of the BasicNetwLayer you can implement
your own ARP functionality.

Naming Conventions There are some naming conventions for the modules in
the ned files, you have to follow. Not following these naming conventions will
result in segmentation faults upon execution of your code!!!

All host modules have to include the characters host or Host somewhere in
its name. Whereas most of the example networks just use host as a ned module
name, you could also come up with names like baseStationHost and mobileHost
in order to create a centralized base station network.

10

4.1 The Basic Module concept 4 BUILDING OWN SIMULATIONS

For more or less all the other ned modules the names cannot be changed.
Those are: channelcontrol, blackboard, net, phy, snrEval. However, it is a good
practice to also keep the default names for the other modules (namely, appl, nic,
mobility).

Basic* Modules In order to have clearly defined interfaces that are easy to un-
derstand – and extend if necessary – we provide a Basic* module for each layer
which in turn is derived from the global BasicModule explained above. The con-
cept of a Basic* module is to have a base class which takes care of the necessary
work that has to be done but is not of specific importance for the real functional-
ity. The general derivation structure of a Mobility Framework module is shown
in Figure 3. The Basic* modules also provide a very basic functionality in terms
of “the BasicNetwLayer is capable of forwarding messages to and from upper and
lower layers but has no routing functionality at all yet”. The idea is to have the
possibility to easily extend or adapt modules of different layers to the specific
requirements of the simulation. To serve this purpose we defined two kinds of
functions: handle*Msg() functions and convenience functions.

handle*Msg() Functions The handle*Msg() functions contain the actual proto-
col functionality. They are called each time a corresponding message arrives and
contain all necessary processing and forwarding information for messages where
required. We provide three different functions to handle the three different kinds
of message events possible:

handleSelfMsg The easiest way to implement timers in OMNeT++ are self mes-
sages. handleSelfMsg() thus is the place to handle all timer related things
and to initiate actions upon timeouts.

handleUpperMsg This function is called every time a message has arrived from
an upper layer. The message already has the corresponding layer n format
(i.e. it is already encapsulated). After processing the message can be for-
warded to the lower layers with the sendDown() function, if necessary.

handleLowerMsg For messages from lower layers it is the other way around.
After being processed they have to be forwarded to upper layers if neces-
sary. This is done by using the sendUp() function which also takes care of
decapsulation.

convenience Functions The convenience functions are defined to facilitate com-
mon interfaces and to hide inevitable interface management from the user. Here
we provide three different functions:

11

4.2 The Message Concept 4 BUILDING OWN SIMULATIONS

encapsMsg This function is called right after a message has arrived from the up-
per layers. It is responsible for encapsulation of the layer n+1 message into
a layer n message. This implies to provide all necessary header information
and if applicable also the conversion of layer n+1 header information into
layer n information (in case of the network layer to convert the application
or transport layer address into a network address). After this the message is
passed to the handleUpperMsg() function.

sendUp sendUp() is the function to be called if a message should be forwarded to
upper layers and is usually called within handleLowerMsg(). It decapsulates
the message before sending it to the layer n+1 module.

sendDown Sending messages to layer n-1 is done with the sendDown() function.
Sometimes it may be necessary to also provide or process additional meta
information here. In the case of the network layer for example it may be
necessary to provide a next hop. The network layer destination address
usually contains no information about the next-hop MAC address a message
has to be forwarded to on its way to the destination so it has to be translated
(ARP does this for IP).

sendDelayedUp In case you want to delay the point of time the message is sent
to the upper layer, you can use this function. The time the message should
be delayed can be given as a parameter.

sendDelayedDown The same as sendDelayedUp, but for sending delayed mes-
sages to the lower layer.

These six functions are provided (with slide differences) in the Basic* module
for each layer of the MF. Usually the three handle*Msg() and the initialize(int)
and finish() functions are the only functions a programmer has to re-implement to
create his/her own module and the functionality of it. The convenience functions
should be used to serve the above described tasks so that newly implemented
modules remain compatible with (almost) any other module implemented for the
MF. The convenience functions cannot be changed in derived modules.

The tasks of the different modules and a more detailed description of the Ba-
sic* modules can be found in the following sections.

4.2 The Message Concept
In order to provide basic functionality like encapsulating and decapsulating mes-
sages in the Basic* modules we need to have fixed message formats for every
layer. The provided message types have the most important fields needed for the

12

4.2 The Message Concept 4 BUILDING OWN SIMULATIONS

corresponding layer. These message types with these fields are obligatory and can
only be extended but not exchanged. Here is a list of all base message classes and
their parameters:

• AirFrame Physical Layer Message
pSend sending power
channelId channel the message is sent on
id id of the originator to get the position
duration time needed to send the message on the

channel
SnrControlInfo Control Information class; used to pass

Sn(i)r information to the decider

• MacPkt Medium Access Control Message
destAddr destination MAC address
srcAddr source MAC address
channelId channel the message is sent on

• NetwPkt Network Layer Message
destAddr destination network address
srcAddr source network address
seqNum sequence number
ttl time to life
MacControlInfo Control Information class; used to tell the

MAC protocol the address of the next hop

• ApplPkt Application Layer Message
destAddr destination application address
srcAddr source application address

Creating your own message If you need additional parameters you can derive
your own message class from one of the basic message classes in the OMNeT++
style, in case of the network layer message:

cplusplus {{
#include "NetwPkt_m.h"
}};

class NetwPkt;

message YourPkt extends NetwPkt
{

13

4.2 The Message Concept 4 BUILDING OWN SIMULATIONS

fields:
int extraField1;
double extraField2;

};

Please note that the name of the included .h file has to be extended with m as this
is the file OMNeT++ creates out of a .msg file.

Using an own message Now you have defined your own message, the next step
is to teach the framework how to create it. To do so, you have to overwrite the
createCapsulePkt function in YourNetwModule.h:

virtual NetwPkt* createCapsulePkt() {
return new YourPkt;

};

When creating a new YourPkt message within your simulation it has to be done
like this:

YourPkt* pkt = static_cast<YourPkt *>(createCapsulePkt());

The framework does the same and is hence able to create YourPkt without even
knowing that such a thing would spring into existence.

These steps are necessary to be able to do the following unavoidable cast oper-
ation. A message is usually given to you as a parameter in the handleUpperMsg()
and handleLowerMsg() function in the basic message format. So, if you want to
have access to the extra fields you have to cast the message into your format. For
YourNetwModule you could use the following code:

void YourNetwModule::handleUpperMsg(NetwPkt *packet)
{
YourPkt *pkt = check_and_cast<YourPkt *>(packet);

// do something with the message...
}

Control Information Classes OMNeT++ (version 3.0a4 or higher) allows you
to define Control Information classes. They can be used to add meta information
to a message that is only relevant for the next processing layer. When that layer
receives this message it then can remove and process this information. As you
can see in the tables, AirFrame and the NetwPkt have such a control information
class.

The SnrControlInfo is used to pass s(i)nr information to the decider so that
it can calculate bit errors based on the s(i)nr information of that message. The

14

4.3 The Nic Concept 4 BUILDING OWN SIMULATIONS

MacControlInfo contains the next hop MAC address the message should be for-
warded to. Currently the MF provides no means to extend the control information
attached to a message. If you need to exchange additional meta information you
would have to add it as a “normal” parameter to your derived message as only
one control information is allowed per message. However please tell us in case
you need additional control information as we might extend the SnrControlInfo
or MacControlInfo respectively if appropriate. Currently we only provide the
absolutely necessary information. But especially the MacControlInfo serves as
interface between MAC and network layer that we want to provide as powerful as
possible.

4.3 The Nic Concept
A nic is a network interface card that includes physical layer functions like trans-
mitting, receiving, modulation as well as medium access mechanisms. The nic
module in the MF therefore is divided into a physical layer like part (snrEval and
decider) and a MAC layer (macLayer). The snrEval module can be used to com-
pute some sn(i)r information for a received message whereas the decider module
can process this information to decide whether a message got lost, has bit errors or
is correctly received. Therefore the decider only handles received messages and
not messages that should be sent. The corresponding compound module with its
simple modules is shown in Figure 4.

The reason for putting the physical and the MAC components into one com-
pound module is easily explained. For most lower layer protocols the MAC and
the physical layer have to be coordinated, so for one protocol (e.g. IEEE 802.11)
there will be a corresponding snrEval module as well as a corresponding decider
module as well as a corresponding mac module. So, if you decide to run a certain
routing protocol over a certain PHY/MAC protocol you simply need to choose the
corresponding nic module when building the host (see Section 3.2).1

In the following the physical layer modules are explained in more detail.

4.3.1 snrEval

The structure of the snrEval modules is a little different from those of the other
modules. The handleLowerMsg() function is split into two functions in order to
simulate the transmission delay. Detailed examples for using these functions are
given in the YourSnrEval template files.

1Hopefully, there will be several working nics in the library soon, but the nic modules defined
in the development directory can be used, too!

15

5 PHYSICAL LAYER MODULES

handleLowerMsgStart This function is called in the moment the reception be-
gins, i.e. in the moment the first bit arrives. Everything that is necessary to
be done at the start of a reception can be done here, e.g. create and initialize
an SNR-list to store SNR values, put the frame into a receive-buffer etc.

handleLowerMsgEnd This function is called when the transmission of a mes-
sage is over. Here you can do whatever is necessary before to message is
handed on to the decider, e.g. take the message out of the receive-buffer,
call the sendUp funtion. . .

5 Physical Layer Modules
The base class for all PhyLayer modules is ChannelAccess which in turn is de-
rived from BasicModule. The only functionality ChannelAccess provides is the
connectivity to the channel (i.e. to other nodes). The function sendToChannel()
should be used to pass messages to the channel. It will send the message to every
connected gate of the Host module.

We provide two versions of a PhyLayer. The first version called P2PPhyLayer
assumes point to point connections between Hosts and is described in Section 5.3.
It is the simplest PhyLayer you can think of and especially useful if detailed prop-
agation and interference models are not needed.

For the second version we decided to divide the physical layer functionality
into two submodules. The PhyLayer is divided into an SnrEval and a Decider
submodule (see Fig. 4). We wanted to keep the SNR calculation and evaluation
separate from the decision about bit errors. This concept makes it very easy to cre-
ate different Decider modules that use the same SnrEval module and vice versa.
We can define for example a Decider module that just compares the calculated
SNR with a certain threshold and one that uses forward error correction and both
modules can use the same SnrEval module.

Typical parameters of an snrEval module are transmitterPower, carrierFre-
quency and pathLossAlpha. They can be used to compute the attenuation of a sig-
nal as well as snir values. The ChannelControl module also has versions of these
parameters (pMax, carrierFrequency, alpha) but they are used independently from
the snrEval parameters. The ChannelControl module only computes the distance
in which nodes might potentially interfere with each other, i.e. in which Om-
net connections are set up. The user can define up to what signal strength re-
ceived power levels should be neglected via the signal attenuation threshold (sat),
i.e. every signal that is weaker than sat is neglected. As a conclusion the same
power- and frequency-values should be used for snrEval- and ChannelControl-
parameters. If different transmitter power levels are used, the maximum power

16

5.1 SnrEval 5 PHYSICAL LAYER MODULES

level has to be used for pMax. For more information on the ChannelControl mod-
ule and connections in the MF see Section 7.2.

5.1 SnrEval
The SnrEval module simulates a transmission delay for all received messages and
also calculates SNR information. The BasicSnrEval does not account for prop-
agation delay. The SNR information is stored in a SnrList. Each SnrList entry
contains a timestamp and a SNR value for this timestamp. The basic functions for
SnrEval modules differ slightly from the ones defined in Section 4.1. handleLow-
erMsg() is subdivided into handleLowerMsgStart() and handleLowerMsgEnd().
Additionally we defined a bufferMsg() and an unbufferMsg() function.

Right after a message is received handleLowerMsgStart() is called. In this
function a SnrList should be created to hold the SNR information for this frame
and an initial entry should be added. Additionally the SNR information of all
other messages in the receive buffer should be updated if desired. Afterwards the
message is buffered (function bufferMsg()) to simulate a transmission delay. Dur-
ing this time other messages may arrive which would interfere with the buffered
message and thus may result in additional SnrList entries to indicate a change in
SNR for this message. After the transmission is complete (i.e. the message is com-
pletely received) unbufferMsg() un-buffers the message. handleLowerMsgEnd()
is called right before the message is passed up to the Decider module. Here the
message should be deleted from the receive buffer and the SnrList containing the
calculated SNR values should be passed as an argument to the sendUp() function.
The sendUp() function

There are several ways to implement SnrEval modules from only calculating
one (average) SNR per message at the beginning of the reception to recalculating
the SNR every time an additional message arrives resulting in a whole list of SNR
values. We believe that our concept enables all these different models without
being too complex but at the same time being sophisticated enough to also support
complex models.

5.2 Decider
The Decider module only processes messages coming from the channel (i.e. from
lower layers). Messages coming from upper layers bypass the Decider module
and are directly handed to the SnrEval module. Decisions about bit error or lost
messages only have to be made about messages coming from the channel. Con-
sequently there is no need to process messages coming from upper layers in the
Decider module.

17

5.3 P2PPhyLayer 6 USING THE BLACKBOARD

The Decider module takes the SnrList created by the SnrEval module and
translates the SNR values to bit errors. The simplest possible implementation
would be to compare the SNR values against a SNR threshold. If at least one of
the SNR values contained in the SnrList exceeds the SNR threshold the message
is dropped due to bit errors. There are of course much more complex implemen-
tations possible as well.

As mentioned already earlier the Decider would also be the place to implement
error detection and / or correction codes.

5.3 P2PPhyLayer
The big advantage of the P2PPhyLayer is that it is a lot faster than the subdivision
into SnrEval and Decider modules. The price for the speed is that one cannot sim-
ulate sophisticated interference models and medium access techniques anymore.

P2PPhyLayer only takes a simple bit error probability pBit (usually from om-
netpp.ini). This bit error probability covers all kinds of possible bit errors and
messages losses. It thus also accounts for message losses due to collisions.

Consequently complex medium access techniques and interference models are
not needed anymore. The advantage is that messages can be sent directly to the
desired next hop and do not need to be broadcasted to all connected neighbors.
This saves a lot of message duplication, sending and processing.

6 Using the Blackboard
When you evaluate the performance of a protocol, you need information on inter-
nal state changes of your protocol, maybe even from protocols that you use. You
could monitor these changes using e.g. vector files from within you protocol and
remove these monitors once you are done. Another way is to use a blackboard.
The state changes are published on it, and the monitors subscribe to these values.
This allows other researchers to tap your protocol for performance evaluation,
while imposing nearly no runtime penalty when the information is not needed.

Maybe even more importantly, the blackboard allows you to exchange infor-
mation between layers, without passing pointers to the modules around. Some
items might not only be interesting for the layer they are created/changed in. The
physical layer for example (snrEval in the MF) can sense whether a channel is
busy or not. If the MAC protocol is based on carrier sense it needs the informa-
tion the physical layer has. The Blackboard is a module where the corresponding
information can be published and then is accessible for any module interested in
it.

18

6.1 Methods for the subscriber 6 USING THE BLACKBOARD

The BasicModule provides everything necessary to interact with the black-
board. It is derived from ImNotifiable – a pure virtual base class that allows the
blackboard to inform your module of changes – and contains a pointer named bb
to the blackboard module.

6.1 Methods for the subscriber
Subscribing to a parameter If you want to subscribe to a parameter, the best
place to do so is the initialize function in stage 0. Suppose for example that you
want to subscribe to changes of an item of the class SomeBBItem. When this
item is changed, you have to be able to interpret its contents – and the way you
can be sure that you can interpret the data is to know its type (or class in C++).
Such items can be signal strength indicators, active radio channels, routing table
entries, reasons why packets where lost and so forth, we will talk more about it in
a separate section.

void YourClass::initialize(int stage) {
BaseClass::initialize(stage);
if (stage == 0){

SomeBBItem item;
catItem = bb->subscribe(this, &item, -1);
...

}
else if(stage == 1) {
...

In case you want to subscribe to a parameter, i.e. you want to be informed each
time the content/value of that parameter changes, you have to call the Blackboard
function subscribe(). You have to include a pointer to your module, a pointer to
an object of class SomeBBItem, and a scope. This function returns an integer that
is unique for the class SomeBBItem. The section 6.2 shows how to use this pa-
rameter. The Blackboard uses the this pointer to notify the module of published
changes. The object pointer & item helps the Blackboard to learn something about
the changes that you are subscribing. The Blackboard uses it to establish the con-
nection between the catItem and the &item. The last parameter of the function
determines a scope, it needs a more detailed explanation. A change can be pub-
lished by several modules within a host. Consider the RSSI and a host with more
than one network card. Each of these cards will publish a separate RSSI – but
it will be of the same class and can hence not be distinguished. However, the
meaning of the RSSI is constrained to one card (its scope): it makes no sense for
a MAC protocol of one card to take the RSSI of the other card into consideration.
The solution is to include the scope into the publication and let the Blackboard do

19

6.2 Getting informed 6 USING THE BLACKBOARD

some filtering. In the example code the subscriber uses -1 as the scope – a wild-
card that subscribes him to all changes published by any module. If you want to
subscribe to some specific stuff, you must make sure that the scope (for network
cards usually the module id of the card) under which the parameter is published,
matches the subscribed scope.

Un-subscribing from a parameter Sometimes parameter changes make only
sometimes sense. For example, the host may decide to go to sleep. In this case it
may be reasonable to unsubscribe:

bb->unsubscribe(this, catItem);

Your module will not get notifications for this parameter anymore.

6.2 Getting informed
Let us assume that you subscribed to a value and there is a valid publisher. The
publisher informs the Blackboard of a change, which in turn calls the receiveB-
BItem method that your class inherited from the abstract ImNotifiable base class.

void YourClass::receiveBBItem(int category, \
const BBItem *details, int scopeModuleId) {
// in case you want to handle messages here
Enter_Method_Silent();
// in case not you but your base class subscribed:
BaseClass::receiveBBItem(category, details, scopeModuleId);
// react on the stuff that you subscribed
if(category == catItem) {

someBBItemPtr =
static_cast<const SomeBBItem *>(details);

// do something
}

}

The parameters of this function have already been explained in section 6.1.
The first is the category, the integer that the subscribe function returned, the sec-
ond is a pointer to an object of the class that you subscribed to and the third is the
scope of this parameter. You should place the Enter Method or Enter Method Silent
macros at the beginning. This allows you to schedule or cancel messages, besides
doing some animation. You should also inform the base class. This pattern is
probably familiar from the initialize function. Now your base class will be in-
formed about all changes it subscribed (and some of them are not interesting to
YourClass) and the changes that YourClass subscribed. This has two implications:

20

6.3 Methods for the publisher 6 USING THE BLACKBOARD

if you forget this line, the simulation may stop completely or behave strange. Sec-
ondly, YourClass must gracefully handle any items that it did not subscribe. To
support you in that task, the item that you receive from the Blackboard is read-
only.

In the next step, the published item is handled. It is easy to determine its type:
just check (may be in a switch statement) the category and cast it to the right class.
Since the association between a class and its category is fixed, a static cast is safe
and fast. Now YourClass can interpret the content and do something about it.

6.3 Methods for the publisher
Parameter You can only publish objects, since in C++ classes carry the seman-
tic meaning. An integer can be used for everything: counting missed lunches,
counting stars, or packets. If you would subscribe to an integer – how can your
class know how to interpret it? This is where classes help you:

class MissedLunches : public BBItem {
BBITEM_METAINFO(BBItem);

protected:
int counter;

public:
double getMissedLunches () const {

return counter;
}
void setMissedLunches(int c) {

counter = c;
}
void addMissedLunch() {

counter++;
}

MissedLunches(int c=0) : BBItem(), counter(c) {
// constructor

};
std::string info() const { // for inspection

std::ostringstream ost;
ost << " You missed " << counter << " lunches.";
return ost.str();

}
};

This associates the meaning “missed lunch” with an integer. At least, this is how
most humans would interpret the name of the class. The class is derived directly

21

6.3 Methods for the publisher 6 USING THE BLACKBOARD

from BBItem (which is derived from cPolymorphic), the base class for all items
that can be published on the blackboard.

For advanced users: Of course it could also refine a class (say MissedMeals)
and have a different parent class. The call to BBITEM_METAINFO(BBItem);
helps the Blackboard to track the inheritance tree. If MissedLunches would have
been derived from MissedMeals this should read BBITEM_METAINFO(MissedMeals);.
This trick allows the Blackboard to deliver MissedLunches to all subscribers of
MissedMeals.

After this you simply go ahead with a standard C++ class definition, and do
what you like. The info function is optional, but helpful with debugging.

Publishing Ok, now that the parameter is defined, let us have a look how to
publish it. First, some initialization is necessary. Let us assume that missedLunch
is an object of class MissedLunches, and a member variable of YourPublisher.

void YourPublisher::initialize(int stage) {
BasicModule::initialize(stage);
if(stage == 0) {

// initialize it
missedLunch.setCounter(0);
// get the category
missedLunchCat = bb->getCategory(&missedLunch);

}
else if(stage == 1) {

bb->publishBBItem(missedLunchCat, \
&missedLunch, parentModule()->id());

}
}

You should initialize missedLunches properly. The next step is to figure the
category out, or put differently establish the connection between a category in-
teger and a class. Now you are all set to publish it. We recommend that you
publish your data in stage 1, this allows all subscribers to initialize the copies
they might have. Publishing is a simple call to bb->publishBBItem . The
first parameter is the category, the second a pointer to the published object that
carries all the information that you want to publish, and the third is the scope.
parentModule()->id() may not be useful as a scope in your case. There is
no default or wildcard – you have to think about a reasonable and easy to under-
stand scope.

Actually, we already covered how to publish a change when the simulation
runs. Let us assume that YourPublisher tracks missed lunches somehow:

22

7 MOBILITY MODULES

void YourPublisher::handleMissedLunch() {
// update information
missedLunch.addMissedLunch();
// publish it.
bb->publishBBItem(missedLunchCat, \

&missedLunch, parentModule()->id());
}

YourPublisher simply has to update the information, and call the publish func-
tion again. That’s it.

7 Mobility Modules

7.1 The Mobility Architecture
This section describes the mobility architecture used in the MF. First the general
concept is described in Section 7.2. Section 7.3 describes how to create won
mobility modules.

There are two mayor questions to consider for a mobility architecture in a
simulation framework. The first question is where to process mobility information
and and how to handle the movements of Hosts. Where and how to dynamically
handle connections in an efficient way is the second decision to make.

We decided to handle mobility in a distributed manner locally in every Host
module. Decisions how and where to move neither affect other Hosts nor do
they require global knowledge. Connection management is handled centrally by
one central controller. In order to set up and tear down connections the distances
between Hosts have to be calculated for which we need the global knowledge of
the position of all Hosts.

The core component of our mobility architecture is the global ChannelCon-
trol module together with an independent MobilityModule in each Host module
(Fig. 5). ChannelControl handles all connection related things whereas the Mobil-
ityModules have two main tasks: The first task is to handle the movements of the
Host. This can be done using various different mobility models (such as Manhat-
tan Mobility or Brownian Motion). Second the MobilityModule communicates the
location changes of the Host to the ChannelControl module. ChannelControl then
updates all connection for this Host. The functionality of the MobilityModules is
further described in Section 7.3.

23

7.2 ChannelControl 7 MOBILITY MODULES

7.2 ChannelControl
The ChannelControl module is responsible for establishing communication chan-
nels between Host modules that are within communication distance and tearing
down these connections once they loose connectivity again. The loss of connec-
tivity can be due to mobility (i.e. the Hosts move too far apart) or due to a change
in transmission power or a crashed Host etc. We decided to keep the concept of
links between Host modules, as opposed to direct message passing, since visible
communication paths are an important source of (debugging) information in early
development stages.

Unfortunately, in OMNeT++ distinct links between modules require at least
two gate objects for each module, one in- and one out- gate (and for each sub-
module as well). For our MF the minimal number of gates per link is six since
the Nic module is embedded within the Host module and is itself subdivided into
an SnrEval, a Decider module and a Mac module. (see Section 4.3). To make
sure to have enough gates even in the worst case scenario (all Hosts are directly
connected), each Host module needs at least two pairs of gates for every single
Host module in the network. Assuming n Hosts in the network one Host would
need 6(n − 1) gates or 3(n − 1) gate pairs, leading to 6n(n − 1) ≈ 6n2 gates in
the whole network.

A more memory-efficient approach is to create gates dynamically which is the
way we decided to go. Gates are not allocated in bulk upon initialization of the
network but created dynamically upon demand. Each Host module maintains two
lists one for the free in-gates and one for the free out-gates. Once ChannelControl
wants to establish a link between two Hosts, it first checks the gate lists in both
Hosts whether free gates are available and only if no free gate was found a new
one is created. Upon link break ChannelControl tears down the connection and
adds the newly freed gates to the corresponding gate list. With this approach we
minimize the memory needed without increasing the computational overhead to
create and destroy gates too much.

In wireless network simulations not only the fact whether two hosts are con-
nected (i.e. can communicate with each other) is important but also the fact
whether two hosts can interfere with each other. That is why the term connection
gets a slightly different meaning for our MF. Upon initialization, the Channel-
Control module determines the maximum interference distance based on global
network parameters such as the carrier frequency of the channel, the maximal
possible sending power and other propagation specific parameters. The maximal
interference distance is a conservative bound on the maximal distance at which a
Host can still possibly disturb the communication of a neighbor, i.e. all Hosts fur-
ther away will not recognize the sending signal at all. Please note that the maximal
interference distance does neither specify the maximal distance at which messages

24

7.3 Implementing Mobility Models 7 MOBILITY MODULES

can be (correctly) received nor does it specify the range at which Hosts definitely
can receive some signal (even if it is only noise). Single Hosts in the network may
have sending powers that are much less the maximum power specified and thus
cannot reach a Host they are (theoretically) connected to. The maximum interfer-
ence distance is just a theoretical means of reducing the computational overhead
of our MF.

Based on the maximal interference distance ChannelControl calculates the
connections between all Hosts upon initialization of the network and updates the
connections every time a Host moves. Updating connections between Hosts is a
computationally expensive operation. Calculating the distance between every pair
of n Hosts in a network has a complexity of O(n2). While this approach may not
be the most efficient way to go, it is sufficient for the current version of our MF
but could also be enhanced in case we experience performance problems.

7.3 Implementing Mobility Models
There is also the possibility to implement new mobility models. To do so, you
have to derive the class for your new mobility module from BasicMobility. Ba-
sicMobility provides the getRandomPosition() function which selects a random
starting position if no position is specified in the omnetpp.ini file. If you want to
use another way of getting a staring position you can redefine this function.

Apart from that you have to do the following: At the times you want your
host to move you have to send yourself a self-message and redefine the handle-
SelfMsg() function in which a new position should be determined. The position
has to be of the type Coord (see API reference). As a final action in this function
the updatePosition() function has to be called. It automatically updates the ani-
mated OMNeT++ GUI and furthermore writes the new position to the Blackboard.
For further details take a look at the API reference of BasicMobility. As an exam-
ple mobility implementation you can also have a look at the ConstSpeedMobility
module in the protocols/mobility folder.

25

7.3 Implementing Mobility Models 7 MOBILITY MODULES

Figure 1: Simulation Setup with 10 nodes

26

7.3 Implementing Mobility Models 7 MOBILITY MODULES

Figure 2: Structure of a Mobile Host

BasicModule

BlackboardAccesscSimpleModule

Basic*Layer

LayerModule

callback functions etc.OMNET++

layer specific
parameters/formats

utilized module

basic structure

Figure 3: The general derivation structure

27

7.3 Implementing Mobility Models 7 MOBILITY MODULES

Figure 4: The structure of a nic module

Host Host

ChannelControl

MobilityModule MobilityModule

Figure 5: Mobility Architecture

28

